![](https://static.wixstatic.com/media/8947b1_70dfbcffafcb42d48b1a74cc41ef658d~mv2.png/v1/crop/x_0,y_0,w_484,h_187/fill/w_301,h_118,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_70dfbcffafcb42d48b1a74cc41ef658d~mv2.png)
Publications
2020
2024
2023
2021
2022
-
Devices and kits for detecting analytes of interest and methods of using the same. V Pini, A Stassinopoulos, M Mösl, J A Heredero, C A Rodriguez, A Thon, H Yaghoubi et al. US Patent Pub. No.: US 2024/0133881 Pub. Date: Apr 25, 2024. https://patents.google.com/patent/US20240133881A1/en
-
Software and algorithms for use in remote assessment of disease diagnostics. H Yaghoubi et al. US Patent Pub. No.: US18/456,451 Pub. Date: Dec 21, 2023. https://patents.google.com/patent/US11783563B2/en
-
Anderson transition in compositionally graded p-AlGaN. S Rathkanthiwar, P Reddy, C E Quiñones, J Loveless, M Kamiyama, P Bagheri et al. J. Appl. Phys. 134, 195705 (2023).
https://doi.org/10.1063/5.0176419
-
Software and algorithms for use in remote assessment of disease diagnostics. H Yaghoubi et al. US Patent Pub. No.: US11783563B2 Pub. Date: Oct 10, 2023. https://patents.google.com/patent/US11783563B2/en
-
Demonstration of near-ideal Schottky contacts to Si-doped AlN. C E Quiñones, D Khachariya, P Bagheri et al. Appl. Phys. Lett. 123, 172103 (2023).
https://doi.org/10.1063/5.0174524
-
High p-conductivity in AlGaN enabled by polarization field engineering. S Rathkanthiwar, P Reddy, B Moody, C Quiñones-García, P Bagheri et al. Appl. Phys. Lett. 122, 152105 (2023).
https://doi.org/10.1063/5.0143427
-
Tracking of point defects in the full compositional range of AlGaN via photoluminescence spectroscopy. J. H. Kim, P Bagheri et al. physica status solidi (a) 220, 8 (2023).
https://doi.org/10.1002/pssa.202200390
-
Color centers in AlN as qubit candidates: point defect management. R Collazo, P Bagheri et al. Proceedings Volume PC12430, Quantum Sensing and Nano Electronics and Photonics XIX; PC124300Y (2023). https://doi.org/10.1117/12.2652657
-
High conductivity and low activation energy in p-type AlGaN. S Rathkanthiwar, P Bagheri et al. Appl. Phys. Lett. 122, 092103 (2023).
https://doi.org/10.1063/5.0141863
-
High electron mobility in AlN: Si by point and extended defect management. P Bagheri et al. J. Appl. Phys. 132, 185703 (2022).
https://doi.org/10.1063/5.0124589
\
-
On the conduction mechanism in compositionally graded AlGaN. S Rathkanthiwar, P Bagheri et al. Appl. Phys. Lett. 121, 072106 (2022).
https://doi.org/10.1063/5.0100756
-
Low resistivity, p-type, N-polar GaN achieved by chemical potential control. S Rathkanthiwar, D Szymanski, D Khachariya, P Bagheri et al. Appl. Phys. Express 15 081004 (2022).
DOI 10.35848/1882-0786/ac8273
-
Systems and methods for immobilizing a target protein. H Yaghoubi et al. US Patent Pub. No.: US17/498,438; Pub. Date: June 30, 2022. https://patents.google.com/patent/US20220204650A1/en
-
Large‐Area, Solar‐Blind, Sub‐250 nm Detection AlGaN Avalanche Photodiodes Grown on AlN Substrates. P Reddy, W Mecouch, M H Breckenridge, D Khachariya, P Bagheri et al. physica status solidi (RRL)–Rapid Research Letters 16, 6 (2022).
https://doi.org/10.1002/pssr.202100619
-
Record> 10 MV/cm mesa breakdown fields in Al0. 85Ga0. 15N/Al0. 6Ga0. 4N high electron mobility transistors on native AlN substrates. D Khachariya, S Mita, P Reddy, S Dangi, J H Dycus, P Bagheri et al. Appl. Phys. Lett. 120, 172106 (2022).
https://doi.org/10.1063/5.0083966
-
Point-defect management in homoepitaxially grown Si-doped GaN by MOCVD for vertical power devices. S Rathkanthiwar, P Bagheri et al. Appl. Phys. Express 15 051003 (2022).
DOI 10.35848/1882-0786/ac6566
-
Doping and compensation in heavily Mg doped Al-rich AlGaN films. P Bagheri et al. Appl. Phys. Lett. 120, 082102 (2022).
https://doi.org/10.1063/5.0082992
-
GaN lateral polar junction arrays with 3D control of doping by supersaturation modulated growth: A path toward III-nitride superjunctions. D Szymanski, D Khachariya, T B Eldred, P Bagheri et al. J. Appl. Phys. 131, 015703 (2022).
https://doi.org/10.1063/5.0076044
-
System and methods for remote assessment of a sample assay for disease diagnostics. H Yaghoubi et al. US Patent Pub. No.: US 2021/0373008 Pub. Date: Dec 2, 2021.
https://patents.google.com/patent/US20210373008A1/en -
A pathway to highly conducting Ge-doped AlGaN. P Bagheri et al. J. Appl. Phys. 130, 205703 (2021).
https://doi.org/10.1063/5.0071791
-
On electrical analysis of Al-rich p-AlGaN films for III-nitride UV light emitters. A Jadhav, P Bagheri et al. Semicond. Sci. Technol. 37 015003 (2022).
DOI 10.1088/1361-6641/ac3710
-
Study on avalanche breakdown and Poole–Frenkel emission in Al-rich AlGaN grown on single crystal AlN. P Reddy, D Khachariya, W Mecouch, M H Breckenridge, P Bagheri et al. Appl. Phys. Lett. 119, 182104 (2021).
https://doi.org/10.1063/5.0062831
-
On the Ge shallow-to-deep level transition in Al-rich AlGaN. P Bagheri et al. J. Appl. Phys. 130, 055702 (2021).
https://doi.org/10.1063/5.0059037
-
Temperature dependence of electronic bands in Al/GaN by utilization of invariant deep defect transition energies. J H Kim, P Bagheri et al. Appl. Phys. Lett. 119, 022101 (2021).
https://doi.org/10.1063/5.0055409
-
High n-type conductivity and carrier concentration in Si-implanted homoepitaxial AlN. M H Breckenridge, P Bagheri et al. Appl. Phys. Lett. 118, 112104 (2021).
https://doi.org/10.1063/5.0042857
-
Weak localization and dimensional crossover in compositionally graded AlxGa1− xN. A Al-Tawhid, A-Al Shafe, P Bagheri et al. Appl. Phys. Lett. 118, 082101 (2021).
https://doi.org/10.1063/5.0042098
-
Self-compensation in heavily Ge doped AlGaN: A comparison to Si doping. S Washiyama, K J Mirrielees, P Bagheri et al. Appl. Phys. Lett. 118, 042102 (2021).
https://doi.org/10.1063/5.0035957
-
High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealing. H Breckenridge, J Tweedie, P Reddy, Y Guan, P Bagheri et al. Appl. Phys. Lett. 118, 022101 (2021).
https://doi.org/10.1063/5.0038628
-
Impact of impurity-based phonon resonant scattering on thermal conductivity of single crystalline GaN. P Bagheri et al. Appl. Phys. Lett. 117, 082101 (2020).
https://doi.org/10.1063/5.0018824
-
Bio-Phototransistors with Immobilized Photosynthetic Proteins A Takshi, H Yaghoubi et al. Electronics 2020, 9(10), 1709. https://doi.org/10.3390/electronics9101709
-
The nature of the DX state in Ge-doped AlGaN. P Bagheri et al. Appl. Phys. Lett. 116, 222102 (2020).
https://doi.org/10.1063/5.0008362
\
-
The role of chemical potential in compensation control in Si: AlGaN. S Washiyama, P Reddy, B Sarkar, M H Breckenridge, Q Guo, P Bagheri et al. J. Appl. Phys. 127, 105702 (2020).
https://doi.org/10.1063/1.5132953
-
Ion-sensitive field-effect transistors with Si3N4 and TaO2 gate insulator for studying self-assembly of photosynthetic proteins. A Takshi, F Khorramshahi, H Yaghoubi et al. Proceedings Volume 11096, Organic and Hybrid Sensors and Bioelectronics XII; 1109607 (2019).
https://doi.org/10.1117/12.2527358
-
(Invited) Understanding Redox Shuttle Photocatalysis in Z-Scheme Solar Water Splitting Reactors. S Keene, W Gaieck, A Zhang, H. Yaghoubi et al. 2018 ECS - The Electrochemical Society Meet. Abstr. MA2018-01 1890
DOI 10.1149/MA2018-01/31/1890
-
(Invited) Recent Progress in Fundamental Photoelectrochemical Studies Relevant to New Low-Cost Designs for Z-Scheme Solar Water Splitting Reactors. W Gaieck, K Tkacz, C D. Sanborn, Y Shao, S Breen, H Yaghoubi et al., 2017 ECS - The Electrochemical Society 2017 Meet. Abstr. MA2017-01 1526.
DOI 10.1149/MA2017-01/32/1526
-
Electrochemical Field-Effect Transistor Utilization to Study the Coupling Success Rate of Photosynthetic Protein Complexes to Cytochrome c. A Takshi, H Yaghoubi et al. Biosensors 2017, 7(2), 16.
https://doi.org/10.3390/bios7020016
-
A ZnO nanowire bio-hybrid solar cell. H Yaghoubi et al. 2017 Nanotechnology 28 054006.
DOI 10.1088/1361-6528/28/5/054006
-
Bipolar Electrodeposition: A Wireless Method for Deposition of Electrocatalysts Onto Semiconducting Particles. W Gaieck, K Tkacz, H Yaghoubi et al. Electrochemical Society Meeting Abstracts 229 2016 Meet. Abstr. MA2016-01 1947.
DOI 10.1149/MA2016-01/38/1947
-
Evaluation of State-of-the-Art Visible-Light-Absorbing Photocatalysts for Use in New Particle Slurry Reactors for Solar Water Splitting. H Yaghoubi et al. Electrochemical Society Meeting Abstracts 229 2016 Meet. Abstr. MA2016-01 1898.
DOI 10.1149/MA2016-01/38/1898
-
Large photocurrent response and external quantum efficiency in biophotoelectrochemical cells incorporating reaction center plus light harvesting complexes. H Yaghoubi et al. Biomacromolecules 2015, 16, 4, 1112–1118.
DOI 10.35848/1882-0786/ac8273
-
Photoactive supercapacitors for solar energy harvesting and storage. A Takshi, H Yaghoubi et al. Journal of Power Sources Volume 275, 2015, Pages 621-626.
https://doi.org/10.1016/j.jpowsour.2014.10.110
-
Toward a Visible Light-Driven Photocatalyst: The Effect of Midgap-States-Induced Energy Gap of Undoped TiO2 Nanoparticles. H Yaghoubi et al. Acs Catalysis 5, 1 2015.
https://doi: 10.1021/cs501539q
-
Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center and Reaction Center Plus Light Harvesting Complexes. H Yaghoubi Graduate Thesis and Dissertation (2015).
https://core.ac.uk/download/pdf/154471222.pdf
-
Hybrid Wiring of the Rhodobacter sphaeroides Reaction Center for Applications in Bio-photoelectrochemical Solar Cells. H Yaghoubi et al. J. Phys. Chem. C 2014, 118, 41, 23509–23518.
https://doi.org/10.1021/jp507065u
-
Electrochemical detection of piezoelectric effect from misaligned zinc oxide nanowires grown on a flexible electrode. H Ebrahimi, H Yaghoubi et al. Electrochimica Acta Volume 134, 10 July 2014, Pages 435-441.
https://doi.org/10.1016/j.electacta.2014.04.119 -
The effect of surfactant-free TiO2 surface hydroxyl groups on physicochemical, optical and self-cleaning properties of developed coatings on polycarbonate. H Yaghoubi et al. 2013 J. Phys. D: Appl. Phys. 46 505316.
DOI 10.1088/0022-3727/46/50/505316
-
Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors. T Tevi, H Yaghoubi et al. Journal of Power Sources Volume 24, 1 November 2013, Pages 589-596.
https://doi.org/10.1016/j.jpowsour.2013.04.150
-
Self‐Cleaning Materials for Plastic and Plastic‐Containing Substrates. H Yaghoubi 2013 Self‐Cleaning Materials and Surfaces: A Nanotechnology Approach, Pages 153-202, John Wiley & Sons Ltd.
https://doi.org/10.1002/9781118652336.ch6
-
The role of gold-adsorbed photosynthetic reaction centers and redox mediators in the charge transfer and photocurrent generation in a bio-photoelectrochemical cell. H Yaghoubi et al. J. Phys. Chem. C 2012, 116, 47, 24868–24877.
https://doi.org/10.1021/jp306798p
-
Surface chemistry of atmospheric plasma modified polycarbonate substrates. H Yaghoubi et al. Applied Surface Science Volume 257, Issue 23, 15 September 2011, Pages 9836-9839.
https://doi.org/10.1016/j.apsusc.2011.06.034 -
Nanomechanical Properties of TiO2 Granular Thin Films. H Yaghoubi et al. ACS Appl. Mater. Interfaces 2010, 2, 9, 2629–2636.
https://doi.org/10.1021/am100455q
-
Self-cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties. H Yaghoubi et al. Surface and Coatings Technology Volume 204, Issues 9–10, 25 January 2010, Pages 1562-1568.
https://doi.org/10.1016/j.surfcoat.2009.09.085
![](https://static.wixstatic.com/media/8947b1_50e3267d7d404cab8822f8a4d5da4ce1~mv2.png/v1/fill/w_759,h_226,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_50e3267d7d404cab8822f8a4d5da4ce1~mv2.png)
![](https://static.wixstatic.com/media/8947b1_eb2673ed774f43dc97db6cdb7df6705c~mv2.png/v1/fill/w_258,h_215,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_eb2673ed774f43dc97db6cdb7df6705c~mv2.png)
![](https://static.wixstatic.com/media/8947b1_3bef206b0cdc44b78e5c97431dbf851e~mv2.png/v1/fill/w_798,h_224,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_3bef206b0cdc44b78e5c97431dbf851e~mv2.png)
![](https://static.wixstatic.com/media/8947b1_d8bdbadfe42943cf9553973dd49db72a~mv2.png/v1/fill/w_713,h_164,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_d8bdbadfe42943cf9553973dd49db72a~mv2.png)
![10 High electron mobility in AlN Si by point and extended defect management.png](https://static.wixstatic.com/media/8947b1_97095602d1f5485ebf556a939630a5f2~mv2.png/v1/fill/w_263,h_262,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/10%20High%20electron%20mobility%20in%20AlN%20Si%20by%20point%20and%20extended%20defect%20management.png)
![11 On the conduction mechanism in compositionally graded AlGaN.png](https://static.wixstatic.com/media/8947b1_bdd7ce7ea53446e3b573bad8c2ab6713~mv2.png/v1/fill/w_789,h_250,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/11%20On%20the%20conduction%20mechanism%20in%20compositionally%20graded%20AlGaN.png)
![12 Low resistivity, p-type, N-polar GaN achieved by chemical potential control.png](https://static.wixstatic.com/media/8947b1_8d69fbe6a65b49dfbd6969c3764c5b1d~mv2.png/v1/fill/w_762,h_228,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/12%20Low%20resistivity%2C%20p-type%2C%20N-polar%20GaN%20achieved%20by%20chemical%20potential%20control.png)
![](https://static.wixstatic.com/media/8947b1_03ba1e4b1deb474499339a96c9a0478f~mv2.png/v1/fill/w_550,h_320,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_03ba1e4b1deb474499339a96c9a0478f~mv2.png)
![16 Point-defect management in homoepitaxially grown Si-doped GaN .png](https://static.wixstatic.com/media/8947b1_34ecf3c62b1a47a38b858f867faef532~mv2.png/v1/fill/w_753,h_185,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/16%20Point-defect%20management%20in%20homoepitaxially%20grown%20Si-doped%20GaN%20.png)
![17 Doping and compensation in heavily Mg doped Al-rich AlGaN films.png](https://static.wixstatic.com/media/8947b1_7337a6109ab04a109fb1dbcc1352bf8f~mv2.png/v1/fill/w_780,h_255,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/17%20Doping%20and%20compensation%20in%20heavily%20Mg%20doped%20Al-rich%20AlGaN%20films.png)
![18 GaN lateral polar junction arrays with 3D control of doping.png](https://static.wixstatic.com/media/8947b1_1f528c4887104fa781ba42ef9b6c9c3f~mv2.png/v1/fill/w_286,h_282,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/18%20GaN%20lateral%20polar%20junction%20arrays%20with%203D%20control%20of%20doping.png)
![21 A pathway to highly conducting Ge-doped AlGaN.png](https://static.wixstatic.com/media/8947b1_91abf3ccd4fd4a1b9521b268dd0a820d~mv2.png/v1/fill/w_352,h_322,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/21%20A%20pathway%20to%20highly%20conducting%20Ge-doped%20AlGaN.png)
![22 On electrical analysis of Al-rich p-AlGaN films for III-nitride UV light .png](https://static.wixstatic.com/media/8947b1_011adcdc02224d9abd4d562fb1b3a861~mv2.png/v1/fill/w_780,h_279,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/22%20On%20electrical%20analysis%20of%20Al-rich%20p-AlGaN%20films%20for%20III-nitride%20UV%20light%20.png)
![23 Study on avalanche breakdown and Poole–Frenkel emission in Al-rich AlGaN grown on singl](https://static.wixstatic.com/media/8947b1_dfeee4d05a5e4d08aa799b6fefdf2bca~mv2.png/v1/fill/w_781,h_281,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/23%20Study%20on%20avalanche%20breakdown%20and%20Poole%E2%80%93Frenkel%20emission%20in%20Al-rich%20AlGaN%20grown%20on%20singl.png)
![24 On the Ge shallow-to-deep level transition in Al-rich AlGaN .png](https://static.wixstatic.com/media/8947b1_4eb396e979664afc8e5eadf3575ba35d~mv2.png/v1/fill/w_751,h_350,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/24%20On%20the%20Ge%20shallow-to-deep%20level%20transition%20in%20Al-rich%20AlGaN%20.png)
![25 Temperature dependence of electronic bands in AlGaN by utilization of invariant deep de](https://static.wixstatic.com/media/8947b1_4ca0ac58db2a4adead5917f951cf9045~mv2.png/v1/fill/w_751,h_303,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/25%20Temperature%20dependence%20of%20electronic%20bands%20in%20AlGaN%20by%20utilization%20of%20invariant%20deep%20de.png)
![27 Weak localization and dimensional crossover in compositionally graded AlxGa1−xN.png](https://static.wixstatic.com/media/8947b1_6a1b8b0339a640ff9e0ce3ae8a57671a~mv2.png/v1/fill/w_505,h_406,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/27%20Weak%20localization%20and%20dimensional%20crossover%20in%20compositionally%20graded%20AlxGa1%E2%88%92xN.png)
![28 Self-compensation in heavily Ge doped AlGaN A comparison to Si doping.png](https://static.wixstatic.com/media/8947b1_697a1a74255941e8ac02b3fbd003c9cd~mv2.png/v1/fill/w_579,h_314,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/28%20Self-compensation%20in%20heavily%20Ge%20doped%20AlGaN%20A%20comparison%20to%20Si%20doping.png)
![29 High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealin](https://static.wixstatic.com/media/8947b1_87d4ce4535074055bbd281894d962d82~mv2.png/v1/fill/w_363,h_312,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/29%20High%20Mg%20activation%20in%20implanted%20GaN%20by%20high%20temperature%20and%20ultrahigh%20pressure%20annealin.png)
![31 Bio-Phototransistors with Immobilized Photosynthetic Proteins.png](https://static.wixstatic.com/media/8947b1_40abd90d27cd4b0e916d82ff9204a78f~mv2.png/v1/fill/w_490,h_283,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/31%20Bio-Phototransistors%20with%20Immobilized%20Photosynthetic%20Proteins.png)
![32 The nature of the DX state in Ge-doped AlGaN.png](https://static.wixstatic.com/media/8947b1_54aff5f569c640dc9ee72f5aac93cb49~mv2.png/v1/fill/w_356,h_250,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/32%20The%20nature%20of%20the%20DX%20state%20in%20Ge-doped%20AlGaN.png)
![33 The role of chemical potential in compensation control in SiAlGaN.png](https://static.wixstatic.com/media/8947b1_037bf5385cd343e78291716e5e60f9a3~mv2.png/v1/fill/w_457,h_359,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/33%20The%20role%20of%20chemical%20potential%20in%20compensation%20control%20in%20SiAlGaN.png)
![37 Electrochemical Field-Effect Transistor Utilization to Study the Coupling Success.png](https://static.wixstatic.com/media/8947b1_e7c861dc25614b038d3bd96ae5269044~mv2.png/v1/fill/w_390,h_257,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/37%20Electrochemical%20Field-Effect%20Transistor%20Utilization%20to%20Study%20the%20Coupling%20Success.png)
![](https://static.wixstatic.com/media/8947b1_0ff1f83152424de3b63b39cfc103daa4~mv2.png/v1/fill/w_359,h_292,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_0ff1f83152424de3b63b39cfc103daa4~mv2.png)
![38 A ZnO nanowire bio-hybrid solar cell.png](https://static.wixstatic.com/media/8947b1_2c64899fdb7947fa9a2db0890be7e53a~mv2.png/v1/fill/w_416,h_319,al_c,lg_1,q_85,enc_avif,quality_auto/38%20A%20ZnO%20nanowire%20bio-hybrid%20solar%20cell.png)
![38 A ZnO nanowire bio-hybrid solar cell 2 (1).png](https://static.wixstatic.com/media/8947b1_42e74df192a2403abfb6b164f1583a6f~mv2.png/v1/fill/w_535,h_275,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/38%20A%20ZnO%20nanowire%20bio-hybrid%20solar%20cell%202%20(1).png)
![Picture5.png](https://static.wixstatic.com/media/8947b1_f0ecff7fa912404e8ac6fffbb985bf0d~mv2.png/v1/fill/w_362,h_242,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Picture5.png)
![41 Large photocurrent response and external quantum efficiency.png](https://static.wixstatic.com/media/8947b1_5c5f2659d4eb4461940253cfd2c33b51~mv2.png/v1/fill/w_296,h_311,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/41%20Large%20photocurrent%20response%20and%20external%20quantum%20efficiency.png)
![43 Toward a Visible Light-Driven Photocatalyst.png](https://static.wixstatic.com/media/8947b1_7f9d0fccecc54043b499c8815758da41~mv2.png/v1/fill/w_306,h_272,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/43%20Toward%20a%20Visible%20Light-Driven%20Photocatalyst.png)
![43 Toward a Visible Light-Driven Photocatalyst 2.png](https://static.wixstatic.com/media/8947b1_c8cb81cecfdb454fb93ed3e30c9df8fa~mv2.png/v1/fill/w_684,h_256,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/43%20Toward%20a%20Visible%20Light-Driven%20Photocatalyst%202.png)
![45 Hybrid Wiring of the Rhodobacter sphaeroides.png](https://static.wixstatic.com/media/8947b1_f897a66aba6940e3944b7413d2f59c68~mv2.png/v1/fill/w_471,h_311,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/45%20Hybrid%20Wiring%20of%20the%20Rhodobacter%20sphaeroides.png)
![47 The effect of surfactant-free TiO2 surface hydroxyl groups .png](https://static.wixstatic.com/media/8947b1_2a20fbac0e744be38ae4a3bff00af9f3~mv2.png/v1/fill/w_378,h_308,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/47%20The%20effect%20of%20surfactant-free%20TiO2%20surface%20hydroxyl%20groups%20.png)
2019
![50 The role of gold-adsorbed photosynthetic reaction centers.png](https://static.wixstatic.com/media/8947b1_5ced634b35a64f0aa5c17f4d5b6d3f5a~mv2.png/v1/fill/w_332,h_269,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/50%20The%20role%20of%20gold-adsorbed%20photosynthetic%20reaction%20centers.png)
![](https://static.wixstatic.com/media/8947b1_a6d9a5e7f9d94bd0b9df21683bfcc5d6~mv2.png/v1/fill/w_312,h_221,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/8947b1_a6d9a5e7f9d94bd0b9df21683bfcc5d6~mv2.png)
![52 Nanomechanical Properties of TiO2 Granular Thin Films 2.png](https://static.wixstatic.com/media/8947b1_bb6b63534f614eeab57d5ef208d74770~mv2.png/v1/fill/w_518,h_254,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/52%20Nanomechanical%20Properties%20of%20TiO2%20Granular%20Thin%20Films%202.png)